Long-term acclimation to elevated pCO2 alters carbon metabolism and reduces growth in the Antarctic diatom Nitzschia lecointei.

نویسندگان

  • Anders Torstensson
  • Mikael Hedblom
  • My Mattsdotter Björk
  • Melissa Chierici
  • Angela Wulff
چکیده

Increasing atmospheric CO2 levels are driving changes in the seawater carbonate system, resulting in higher pCO2 and reduced pH (ocean acidification). Many studies on marine organisms have focused on short-term physiological responses to increased pCO2, and few on slow-growing polar organisms with a relative low adaptation potential. In order to recognize the consequences of climate change in biological systems, acclimation and adaptation to new environments are crucial to address. In this study, physiological responses to long-term acclimation (194 days, approx. 60 asexual generations) of three pCO2 levels (280, 390 and 960 µatm) were investigated in the psychrophilic sea ice diatom Nitzschia lecointei. After 147 days, a small reduction in growth was detected at 960 µatm pCO2. Previous short-term experiments have failed to detect altered growth in N. lecointei at high pCO2, which illustrates the importance of experimental duration in studies of climate change. In addition, carbon metabolism was significantly affected by the long-term treatments, resulting in higher cellular release of dissolved organic carbon (DOC). In turn, the release of labile organic carbon stimulated bacterial productivity in this system. We conclude that long-term acclimation to ocean acidification is important for N. lecointei and that carbon overconsumption and DOC exudation may increase in a high-CO2 world.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Elevated temperature and PCO2 shift metabolic pathways in differentially oxidative tissues of Notothenia rossii.

Mitochondrial plasticity plays a central role in setting the capacity for acclimation of aerobic metabolism in ectotherms in response to environmental changes. We still lack a clear picture if and to what extent the energy metabolism and mitochondrial enzymes of Antarctic fish can compensate for changing temperatures or PCO2 and whether capacities for compensation differ between tissues. We the...

متن کامل

Ocean acidification decreases the light‐use efficiency in an Antarctic diatom under dynamic but not constant light

There is increasing evidence that different light intensities strongly modulate the effects of ocean acidification (OA) on marine phytoplankton. The aim of the present study was to investigate interactive effects of OA and dynamic light, mimicking natural mixing regimes. The Antarctic diatom Chaetoceros debilis was grown under two pCO2 (390 and 1000 μatm) and light conditions (constant and dyna...

متن کامل

The effects of elevated temperature and ocean acidification on the metabolic pathways of notothenioid fish

The adaptations used by notothenioid fish to combat extreme cold may have left these fish poorly poised to deal with a changing environment. As such, the expected environmental perturbations brought on by global climate change have the potential to significantly affect the energetic demands and subsequent cellular processes necessary for survival. Despite recent lines of evidence demonstrating ...

متن کامل

Elevated carbon dioxide alters the plasma composition and behaviour of a shark.

Increased carbon emissions from fossil fuels are increasing the pCO2 of the ocean surface waters in a process called ocean acidification. Elevated water pCO2 can induce physiological and behavioural effects in teleost fishes, although there appear to be large differences in sensitivity between species. There is currently no information available on the possible responses to future ocean acidifi...

متن کامل

Juvenile Antarctic rockcod (Trematomus bernacchii) are physiologically robust to CO2-acidified seawater.

To date, numerous studies have shown negative impacts of CO2-acidified seawater (i.e. ocean acidification, OA) on marine organisms, including calcifying invertebrates and fishes; however, limited research has been conducted on the physiological effects of OA on polar fishes and even less on the impact of OA on early developmental stages of polar fishes. We evaluated aspects of aerobic metabolis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings. Biological sciences

دوره 282 1815  شماره 

صفحات  -

تاریخ انتشار 2015